# FRAÇÕES DAS RADIAÇÕES DIRETA (K<sub>dh</sub>) E DIFUSA (K<sub>d</sub>) NA HORIZONTAL EM FUNÇÃO DO INDICE DE CLARIDADE (K<sub>T</sub>)

João F. Escobedo<sup>1</sup>, Eduardo N. Gomes<sup>2</sup>, Amauri P. de Oliveira<sup>3</sup>, Jacyra Soares<sup>4</sup>

**RESUMO:** No presente trabalho é apresentado as equações de estimativa e as validações para as radiações direta na horizontal( $K_{dh}$ ) e difusa( $K_{d}$ ) em função do índice de claridade ( $K_{T}$ ) por meio dos modelo de Liu-Jordan. Na modelagem, realizada através de regressão polinomial, utilizou-se dados do período de 8 anos (1996 a 2003) e a validação, realizada através dos indicativos estatísticos MBE, RMSE e teste t, com dois anos de dados (2004 a 2005). As equações de estimativa horária, diária e mensal com seus respectivos índices de correlação R e os indicativos estatísticos MBE e RMSE das validações são apresentados e discutidos com a literatura.

**ABSTRACT:** In the present work it's presented equations to estimate, direct (beam) and diffuse radiations as function clearness index (Kt) by means of Liu-Jordan's models. It's also presented the validation of the models. It's used 8 years of the database (1996 to 2003) in the modelling, by polynomial regression. The validation was made using the statistical indicators MBE, RMSE and t-test, using 2 years (2004 to 2005) of the database. The hourly, daily and monthly estimative equations with it's respective correlation index (R), and the validation statistical indicators MBE and RMSE are presented and compared with the literature.

Palavras-chave: Radiações solares, global, direta, difusa equações de estimativa

## INTRODUÇÃO

O Brasil, atualmente encontra-se em pleno desenvolvimento tecnológico na área das fontes renováveis de energia tais como: conversão de energia solar térmica e fotovoltaica, biomassa, entre outras. Um programa com energia solar deve sempre começar com estudos sobre a radiação solar

<sup>&</sup>lt;sup>1</sup> Físico, Dr. Departamento de Ciências Ambientais – Recursos Naturais, Faculdade de Ciências Agronômicas - UNESP, Caixa Postal 237, 18603-970, Botucatu, SP, e-mail: <u>escobedo@fca.unesp.br</u>

<sup>&</sup>lt;sup>2</sup> Eng<sup>o</sup>Agr<sup>o</sup>, Dr. Departamento de Ciências Ambientais – Recursos Naturais, Faculdade de Ciências Agronômicas - U-NESP, Caixa Postal 237, 18603-970, Botucatu, SP, e-mail: <u>engomes@fca.unesp.br</u>

<sup>&</sup>lt;sup>3</sup> Meteorologista, PHD., Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Ciências Atmosféricas, USP, Rua do Matão, 1226, Butantã, 05508090 - São Paulo, SP, <u>apdolive@usp.br</u>

<sup>&</sup>lt;sup>4</sup> Meteorologista, PHD., Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Ciências Atmosféricas, USP, Rua do Matão, 1226, Butantã, 05508090 - São Paulo, SP, <u>jacyra@usp.br</u>

para a região de interesse, e para locais em que a radiação solar não é monitorada, a solução é utilizar o processo de estimativa através de modelos ou correlações empíricas.

A Estação de Radiometria Solar, da UNESP de Botucatu monitora a radiação solar na superfície horizontal: global, difusa (métodos do anel de sombreamento, disco e diferença), direta na incidência, desde 1995, com objetivo de conhecer as series temporais das três radiações e as equações de estimativas. As series e as equações de estimativas são de grande importância, porque poderão ser utilizados em projetos solares de simulação em outros locais de mesmas características climáticas, medindo apenas a radiação global. No presente trabalho, objetivou-se elaborar as equações de estimativa para: frações da radiação difusa  $K_d$  e  $K_{dh}$  direta em função do índice de claridade  $K_T$ nas partições horária, diária e mensal.

#### METODOLOGIA

A base de dados das radiações solares, direta na incidência e global, utilizada compreende os anos de 1996 a 2005. A irradiância global (I<sub>G</sub>) é monitorada por um piranômetro Eppley PSP enquanto a direta na incidência (I<sub>b</sub>) por um pireliômetro Eppley NIP, acoplado a um rastreador solar ST3 da Eppley. A irradiância difusa(I<sub>d</sub>) deste trabalho é gerada pelo método indireto, ou seja, pela diferença entre a irradiância I<sub>G</sub> e a irradiância direta na horizontal I<sub>dh</sub>, medidas na mesma freqüência, por meio da equação: I<sub>d</sub> = I<sub>G</sub> – I<sub>b</sub>cosZ, onde z é o ângulo zenital.

Na aquisição dos dados foi utilizado um Datalogger da Campbell CR23X operando na freqüência de 1 Hz, armazenando médias instantâneas de 5 minutos (médias de 300 leituras instantâneas). As radiações dos anos de 1996 a 2003 foram utilizadas para geração das equações de estimativas, e os anos de 2004 e 2005 para a validação.

### **RESULTADOS E DISCUSSÃO**

A figura 1 mostra as correlações horárias: (a) fração da direta  $K_{dh}^{h}$  e índice de claridade  $K_{T}^{h}$ ; (b) fração da difusa  $K_{d}^{h}$  e índice de claridade  $K_{T}^{h}$ . As correlações das frações  $K_{dh}^{h}$  e  $K_{d}^{h}$  em função de  $K_{T}^{h}$ , mostram que a dependência não é linear, e que, para cada intervalo de variação de  $K_{T}^{h}$ , há um largo intervalo de variação de  $K_{dh}^{h}$  e  $K_{d}^{h}$  e  $K_{dh}^{h}$  e função de um mesmo  $K_{T}^{h}$  é devido a variação da massa ótica, onde as irradiâncias I<sub>dh</sub> e I<sub>d</sub> diminuem no sentido que a massa ótica aumenta. As variações das frações  $K_{dh}^{h}$  e  $K_{d}^{h}$ , é minimizado em cada intervalo centesimal  $K_{T}^{h}$ , quando transformadas em frações médias  $K_{dh}^{h}$  e  $K_{d}^{h}$ , o que permite ajuste de uma

função simples. Esta técnica foi utilizada por diversos pesquisadores para as frações difusa  $K_d^h$  e direta  $K_{dh}^h$ , relacionadas com intervalos centesimais de  $K_T^h$  (Bartoli et al ., 1982 entre outros).

As evoluções das frações médias  $K_{dh}^{h}$  e  $K_{d}^{h}$  em função de  $K_{T}^{h}$ , são similares as correlações encontradas por De Miguel et al (2001); Oliveira(2002) para a fração difusa e Louche et al., (1991), para a fração direta, entre muito outros. Na Tabela 1 são apresentadas as equações de estimativas para as frações médias  $K_{dh}^{h}$  e  $K_{d}^{h}$  em função de  $K_{T}^{h}$  com seus respectivos coeficientes de determinação.



**Figura 1.** Correlações horárias: (a) fração da direta  $K_{dh}^{h}$ ; (b) fração da difusa  $K_{d}^{h}$  em função de  $K_{T}^{h}$ .

| Tabela 1. | Equações o | de Estimativa | das frações | médias $K_{dh}^{h}$    | e | $K_d^h$ en        | n função de  | $e K_T^h$ ,  |
|-----------|------------|---------------|-------------|------------------------|---|-------------------|--------------|--------------|
|           | Lquações   | ac Estimativa | uas mações  | meanas n <sub>dh</sub> | U | $\mathbf{n}_d$ cm | ii Tuliçao u | $\sum n_T$ , |

| $K_{dh}^{h} = 0,00915 + 0,13136Kt - 0,46097Kt^{2} + 7,50806kt^{3} - 6,95862kt^{4}$ | $R^2 = 0,99936$ |
|------------------------------------------------------------------------------------|-----------------|
| $K_d^h = 0,99085 - 0,13136kt + 0,46097kt^2 - 7,50806kt^3 + 6,95862kt^4$            | $R^2 = 0,99936$ |

As equações polinomiais de 4<sup>a</sup> ordem apresentam coeficientes de determinação da ordem de 0,9994 e mostram que as frações médias  $K_{dh}^{h}$  e  $K_{d}^{h}$  estão bem correlacionados com o índice de claridade  $K_{T}^{h}$ .. Na tabela 2 são apresentados os indicativos estatísticos MBE, RMSE e d de Willmott.

|                             | 1 1 1           | 1.1 ~     | 1 ~        | 1     | ,• ,•       | 1 / '    |
|-----------------------------|-----------------|-----------|------------|-------|-------------|----------|
| <b>Tabela</b> Z Indicativos | estatisticos da | validação | das equaço | es de | estimativas | horarias |
|                             | columbricos du  | vandayao  | uus equuço | 05 40 | coulling ab | norunus. |

| frações      | MBE%     | RMSE%    | "d" de Willmott |
|--------------|----------|----------|-----------------|
| $K^{h}_{dh}$ | 7,30207  | 33,24703 | 0,96165         |
| $K_d^h$      | -4,58461 | 20,87418 | 0,96165         |

O indicativo estatístico MBE, inferior a 7,3% mostra que erro médio das estimativas para frações  $K_{dh}^{h}$  e  $K_{d}^{h}$  não é elevado, onde o melhor desempenho foi para a estimativa da fração  $K_{d}^{h}$ . O indicativo RMSE é comparável aos mostrados na literatura, melhor pela ordem para frações  $K_{d}^{h}$   $K_{dh}^{h}$ .Os coeficientes "d" de Willmott superior a 0,9616 são elevados e mostram bom nível de ajustamento da estimativa em relação à medida, para as duas frações  $K_{dh}^{h}$  e  $K_{d}^{h}$ . A figura 2 mostra as correlações diárias: (a) fração da direta  $K_{dh}^{d}$  e fração da difusa  $K_{d}^{d}$  em função de  $K_{T}^{d}$ .



**Figura 2.** Correlações diárias: (a) fração da direta  $K_{dh}^d$ ; (b) fração da difusa  $K_d^d$  em função  $K_T^d$ .

Os níveis de espalhamento das frações  $K_{dh}^d \in K_d^d$  em função de  $K_T^d$ , decresceram em relação aos níveis das relações horárias da figura 1. Partições de tempo menores respondem com mais sensibilidade e rapidez as mudanças da atmosfera, permitindo melhor detalhamento da distribuição pontual das radiações e como conseqüência geram uma variabilidade maior. Na Tabela 3 são apresentadas as equações de estimativas para as frações médias  $K_{dh}^d \in K_d^d$  em função de  $K_T^d$  com seus respectivos coeficientes de determinação e mostram que as frações  $K_{dh}^d \in K_d^d$  estão bem correlacionados com o índice de claridade  $K_T^d$ . Os resultados ajustes são melhores ou similares aos citadas na literatura para a fração  $K_d^d$  (Oliveira et. al., 2002; Jacovides et al., 1996). Na tabela 4 são apresentados os resultados da validação.

**Tabela 3**. Equações de estimativas diárias das frações  $K_{dh}^d$  e  $K_d^d$  em função de  $K_T^d$ .

| $K_{d}^{d} = 0,99672 - 0,04941Kt + 0,97609Kt^{2} - 9,42619Kt^{3} + 8,25615Kt^{4}$  | $R^2 = 0,99859$ |
|------------------------------------------------------------------------------------|-----------------|
| $K_{dh}^{d} = 0,00328 + 0,04941Kt - 0,97609Kt^{2} + 9,42619Kt^{3} - 8,25615Kt^{4}$ | $R^2 = 0,99859$ |

| Frações                    | MBE.%    | RMSE.%   | d       |
|----------------------------|----------|----------|---------|
| $K_{dh}^{d} \ge K_{t}^{d}$ | -0,19129 | 16,71872 | 0,97581 |
| $K_d^d \propto K_t^d$      | -0,89938 | 18,16101 | 0,97576 |

O indicativo estatístico MBE, mostram que as equações  $K_{dh}^d e K_d^d$  subestimam as medidas; o indicativo RMSE abaixo dos 20,0%, mostram que a dispersão é inferior aos RMSE em torno de

25,0% citados na literatura por De Miguel (2001), Oliveira et. al., (2002). O índice de ajustamento "d" de Wilmott, superior a 0,9758 expressa a boa concordância entre a estimativa e a medida, igualmente para as duas equações  $K_{dh}^d$  e  $K_d^d$ .

A figura 3 mostra as correlações mensais diárias: (a) fração da direta  $K_{dh}^{m}$  e índice de claridade  $K_{T}^{m}$  e (b) fração da difusa  $K_{d}^{m}$  e índice de claridade  $K_{T}^{m}$ . As correlações das frações mensais diárias  $K_{dh}^{m}$  e  $K_{d}^{m}$  são similares as encontradas na literatura. Na tabela 5 é apresentado as equações de estimativa para as frações médias  $K_{dh}^{m}$  e  $K_{d}^{m}$  em função de  $K_{T}^{m}$  com seus respectivos coeficientes de determinação R<sup>2</sup>. Para a fração a  $K_{d}^{m}$ , os coeficientes linear e angular divergem, sendo consideravelmente mais elevados que outros pais como a Ilha de Cyprus, como mostram os trabalhos de Jacovides et al (1996). O resultado se aproxima das equações de Lalas, et al., (1987) nas Ilhas Gregas e Oliveira, et al.,(2002) em São Paulo.



**Figura 3**. Correlações mensais : (a) fração da direta ; (b) fração da difusa  $K_d^m$  em função de  $K_T^m$ .

| <b>Tubert et Equações de Estimativa das mações mensais</b> $M_{dh}^{h}$ e $M_{d}^{h}$ em | runçuo de m <sub>T</sub> |
|------------------------------------------------------------------------------------------|--------------------------|
| $K_d^m = 1,41558 - 1,79223K_t^m$                                                         | $R^2 = 0,97668$          |
| $K_{dh}^{m} = -0.41558 + 1.79223 K_{T}^{m}$                                              | $R^2 = 0,97668$          |

**Tabela 5.** Equações de Estimativa das frações mensais  $K_{dh}^m$  e  $K_d^m$  em função de  $K_T^m$ 

Na tabela 6 são apresentados os indicativos estatísticos MBE, RMSE e d de Willmott. O indicativo estatístico MBE, mostram que as equações  $K_{dh}^m$  superestima e  $K_{dh}^m$  e  $K_d^m$  subestima a medida com erro na estimativa inferior a 12,5%, com melhor resultado para a equação  $K_d^m$  com erro de 5,0%.

O indicativo RMSE abaixo dos 17,0%, mostram que a dispersão entre a medida e a estimativa é inferior de outras equações de estimativa. O índice de ajustamento "d" de Wilmott, superior a 0,89253 expressa a boa concordância entre a estimativa e a medida, igualmente para as duas equações  $K_{dh}^m$  e  $K_d^m$ .

Tabela 6. Indicativos Estatísticos da Validação das equações de estimativas mensais.

| Equações                   | MBE.%    | RMSE.%   | "d" de Willmott |
|----------------------------|----------|----------|-----------------|
| $K_{dh}^{m} \ge K_{T}^{m}$ | 12,50865 | 16,25325 | 0,89253         |
| $K_d^m \ge K_T^m$          | -5,11187 | 6,64217  | 0,89253         |

## CONCLUSÕES

A base de dados das radiações global, direta na horizontal e difusa de 10anos medida em Botucatu/SP/Brasil, geraram equações de estimativas diária e mensal para as frações  $K_{dh}$  e  $K_d$  em função de  $K_T$ , todas com elevados coeficientes de determinação. No geral, os resultados da validação por meio dos indicativos estatísticos MBE, RMSE e d de Willmott, mostraram bom desempenho quanto a precisão e ajustamento entre a medida e a estimativa para as equações,  $K_{dh}$  e  $K_d$  nas três partições.

## **REFERÊNCIAS BIBLIOGRÁFICAS**

- BARTOLI, B., CUOMO, V., AMATO, U. Diffuse and bean components of daily global radiation in Genova and Macerata. Solar Energy, v.28, p.307-11, 1982.
- DE MIGUEL, A., BILBAO, J., KAMBEZIDIS, H., NEGRO, E. Diffuse solar irradiation model evaluation in north Mediterranean belt area. Solar Energy, v.70, n.2, p.143-53, 2001.
- JACOVIDES, C. P., HADJIOANNOU, L., STEFANOU, L. On the diffuse fraction of daily and monthly global radiation for the island of Cyprus. Solar Energy, v.56, n.6, p.565-72, 1996.
- LALAS, D. P., PETRAKIS, M., PAPADOPOULOS, C. Correlations for the estimation of the diffuse radiation component in Greece. Solar Energy, v.39, n.5, p.455-8, 1987.
- LIU, B. Y. H., JORDAN, R. C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, v.3, n.4, p.1-19, 1960.
- OLIVEIRA, A. P., ESCOBEDO, J. F., SOARES, J. Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil. App. Energy, v.71, p.59-73, 2002.

LOUCHE, A., NOTTON, G., POGGI, P., SIMONNOT, G. Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. *Sol. Energy*, v.46, p.261-66, 1991.

Agradecimento: À FAPESP, e ao CNPq pelo apoio financeiro.